HTML5 introduces many new powerful features, one of which is the *canvas* element. The *canvas* allows us to draw graphics using JavaScript. Here I present my first experiment with the HTML5 canvas element. If your browser supports the HTML5 canvas element, you should see a rotating wireframe cube below. If this experiment does not work with your browser, make sure you download its latest version.

## The Code

I will give you just a brief explanation of the code. First of all, I defined the canvas element in the HTML structure. Then, in the Javascript code I have the Point3D class that represents 3D points. This class has methods to rotate points across the 3 axes (X, Y, and Z), and to map them to 2D space using perspective projection. Using this class I defined 8 vertices of the cube. The *startDemo()* function is called after the document is fully loaded. It creates a 2d context from the canvas, and starts the main loop. The loop() function transforms and draws the wireframe cube.

<html> <head> <title>First Experiment with HTML5</title> <script type="text/javascript"> window.onload = startDemo; function Point3D(x,y,z) { this.x = x; this.y = y; this.z = z; this.rotateX = function(angle) { var rad, cosa, sina, y, z rad = angle * Math.PI / 180 cosa = Math.cos(rad) sina = Math.sin(rad) y = this.y * cosa - this.z * sina z = this.y * sina + this.z * cosa return new Point3D(this.x, y, z) } this.rotateY = function(angle) { var rad, cosa, sina, x, z rad = angle * Math.PI / 180 cosa = Math.cos(rad) sina = Math.sin(rad) z = this.z * cosa - this.x * sina x = this.z * sina + this.x * cosa return new Point3D(x,this.y, z) } this.rotateZ = function(angle) { var rad, cosa, sina, x, y rad = angle * Math.PI / 180 cosa = Math.cos(rad) sina = Math.sin(rad) x = this.x * cosa - this.y * sina y = this.x * sina + this.y * cosa return new Point3D(x, y, this.z) } this.project = function(viewWidth, viewHeight, fov, viewDistance) { var factor, x, y factor = fov / (viewDistance + this.z) x = this.x * factor + viewWidth / 2 y = this.y * factor + viewHeight / 2 return new Point3D(x, y, this.z) } } var vertices = [ new Point3D(-1,1,-1), new Point3D(1,1,-1), new Point3D(1,-1,-1), new Point3D(-1,-1,-1), new Point3D(-1,1,1), new Point3D(1,1,1), new Point3D(1,-1,1), new Point3D(-1,-1,1) ]; // Define the vertices that compose each of the 6 faces. These numbers are // indices to the vertex list defined above. var faces = [[0,1,2,3],[1,5,6,2],[5,4,7,6],[4,0,3,7],[0,4,5,1],[3,2,6,7]] var angle = 0; function startDemo() { canvas = document.getElementById("thecanvas"); if( canvas && canvas.getContext ) { ctx = canvas.getContext("2d"); setInterval(loop,33); } } function loop() { var t = new Array(); ctx.fillStyle = "rgb(0,0,0)"; ctx.fillRect(0,0,400,200); for( var i = 0; i < vertices.length; i++ ) { var v = vertices[i]; var r = v.rotateX(angle).rotateY(angle).rotateZ(angle); var p = r.project(400,200,128,3.5); t.push(p) } ctx.strokeStyle = "rgb(255,55,255)" for( var i = 0; i < faces.length; i++ ) { var f = faces[i] ctx.beginPath() ctx.moveTo(t[f[0]].x,t[f[0]].y) ctx.lineTo(t[f[1]].x,t[f[1]].y) ctx.lineTo(t[f[2]].x,t[f[2]].y) ctx.lineTo(t[f[3]].x,t[f[3]].y) ctx.closePath() ctx.stroke() } angle += 2 } </script> </head> <body> <h2>First Experiment with HTML5</h2> <canvas id="thecanvas" width="400" height="200"> Your browser does not support the HTML5 canvas element. </canvas> </body> </html>

I have previously published a tutorial explaining how to make a wireframe cube using python.

*What do you think about this? Please comment, share or subscribe.*

That is very awesome!

Hello Teak. Thank you very much.

Have you tried to do something with HTML5 and JavaScript?

Not HTML5, but I’ve used and am loving the new stuff in CSS3. You can do some pretty neat stuff using JS and CSS3. I going to fiddle with HTML5 when I get some more time…

I am in love with CSS3 too. I am preparing to post some cool applications with CSS3.

Thank you very much this code help me for my website

hi,

i am new in html5 can u plz describe the code… specially this.rotateX = function(angle) {

var rad, cosa, sina, y, z

rad = angle * Math.PI / 180

cosa = Math.cos(rad)

sina = Math.sin(rad)

y = this.y * cosa – this.z * sina

z = this.y * sina + this.z * cosa

return new Point3D(this.x, y, z)

}

Where does [x * sina + y * cosa] come from. I cant find any reference to this equation.

Radu: That formula is used to calculate new coordinate after rotation operation. You can find more information by googling “Rotation Matrix” or “Transformation Matrix”

Thank you for the code !

What is the difference fov and ViewDistance ? Looks the same result to me,

and,

what if the ViewDistance goes negative ? (camera in the cube) It goes crazy !